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In two-sided settings, market designers tend to advocate for deferred acceptance
(DA) over priority mechanisms, even though theory tells us that both types of mech-
anisms can yield unstable matches in incomplete information equilibrium. However,
if match participants on the proposed-to side deviate from equilibrium by truth-
telling, then DA yields stable outcomes. In a novel experimental setting, we find
out-of-equilibrium truth-telling under DA but not under a priority mechanism, which
could help to explain the success of DA in preventing unraveling in the field. We then
attempt to explain the difference in behavior across mechanisms by estimating an
experience-weighted learning model adapted to this complex strategic environment.
We find that initial beliefs drive the difference in agents’ ability to find strategic
equilibria, rather than alternative explanations such as differences in the learning
process.
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1. INTRODUCTION

Why do some two-sided matching mechanisms continue to be used from year
to year while others are abandoned? Although the usual distinction concerns
whether a mechanism is stable with respect to the reported preferences, such
an explanation is incomplete without also considering whether preferences are
truthfully revealed.1 Previous theoretical literature has looked at large markets
to do this; however, we take a different tack by observing strategic preference
revelation in the lab. Our evidence suggests that out-of-equilibrium truth-telling
under the deferred acceptance mechanism can lead to matches that are more
stable than theory predicts.

Two-sided matching mechanisms are widely used in the field. The most well-
known example is the National Resident Matching Program (NRMP) which ev-
ery year makes about 25,000 matches between newly-minted doctors and res-
idency programs in the United States (NRMP, 2009). Once participants have
formed their preferences, they submit rank-order lists of acceptable match part-
ners to the NRMP clearinghouse, which then runs those lists through an algo-
rithm, outputting a match. Other examples of two-sided matching include the
Association of Psychology Post-doctoral and Internship Centers (APPIC) match
(about 2,800 clinical psychologists matched to internship programs per year (AP-
PIC, 2009)), and the New York City Department of Education public high school

1One might also bypass truthful preference revelation entirely and simply look at whether
a mechanism yields a stable allocation in equilibrium. See, for instance, Roth (1984b), Ergin
and Sönmez (2006) and Pathak and Sönmez (2008). Roth (1982) shows that any mechanism
that is stable with respect to reported preferences cannot admit truth-telling as a dominant
strategy for all players.
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match (about 90,000 high school students per year (NYC-DOE, 2009)).2

When deciding which mechanism to use in a matching market, the literature
has consistently come back to the idea of stability. A stable match has no agents
who would prefer to remain unmatched (individual rationality) and no blocking
pairs (pairwise stability), where a blocking pair is two agents who prefer each
other to their assigned matches. If agents are free to recontract ex post, it is not
too hard to see how instabilities might render the match moot, but even if agents
must abide by the match, they can sidestep it by anticipating blocking pairs and
either formally contracting early or informally prearranging a match.3 This has
been shown both theoretically (Sönmez, 1999; Roth, 1991) and in the lab (Kagel
and Roth, 2000). If too many agents leave the match or prearrange, then the
clearinghouse will likely be abandoned. Of course, a stable matching mechanism
does not necessarily prevent unraveling, but in many real world markets, whether
or not a stable mechanism is used seems to make the difference.4

Most matching schemes in the field can be classified as either deferred ac-
ceptance (DA) mechanisms or priority mechanisms.5 DA mechanisms are based
on the Gale-Shapley algorithm. One such mechanism, M -Proposing DA, is im-
plemented in the following way, denoting the members of the two sides of the
market Ms and W s (Gale and Shapley, 1962):

M-Proposing DA

Step 1: All Ms make an offer to their first-choice W ; W s hold their favorite
acceptable offer, rejecting all others.

Step t: Rejected Ms make an offer to their favorite acceptable W that hasn’t
rejected them yet; W s hold their favorite acceptable offer from this round
and previous rounds, rejecting all others.

STOP: The algorithm stops in the first round where no new offers are made.
All held offers become finalized matches.

Priority mechanisms instead use the preferences submitted by the participants
to order the set of all possible match pairs. They then try to implement those

2For papers on these matches, see Roth (1984a, 1996, 2003); Roth and Peranson (1999);
Roth and Xing (1997); Abdulkadiroğlu, Pathak, and Roth (2005); Abdulkadiroglu, Pathak,
and Roth (2009).

3Usually a pair can do this by agreeing to rank each other first to the clearinghouse. Most
mechanisms guarantee that two partners who rank each other first will be matched.

4Other causes of early contracting include: insuring over states of the world before pay-
off relevant information is revealed (Roth and Xing, 1994; Li and Rosen, 1998; Li and Suen,
2000; Suen, 2000), the presence of market power (Roth and Xing, 1994), similar preferences
(Ha laburda, 2010), arrival of new agents (Du and Livne, 2010), excess supply of workers com-
bined with insufficient supply of high quality workers (Niederle, Roth, and Ünver, 2009), cul-
tural norms concerning exploding offers (Niederle and Roth, 2009), information transmission
through a social network (Fainmesser, 2013), and costs of participation (Damiano, Li, and
Suen, 2005).

5Another important class of mechanisms, based on linear programming optimization, is not
considered here. See Ünver (2001) and Ünver (2005).
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match pairs in that order, skipping those that are not feasible due to previously
implemented matches (Roth and Sotomayor, 1990). For concreteness, consider
the M -Proposing Priority mechanism implemented by the following algorithm:6

M-Proposing Priority
Step 1: All Ms make an offer to their first-choice W ; W s are permanently

matched to their favorite acceptable M who made an offer, rejecting all
other offers.

Step t: Rejected Ms make an offer to their favorite acceptable W that has not
yet rejected them; matched W s reject all offers; and unmatched W s are
permanently matched to their favorite acceptable M who made an offer.

STOP: The algorithm stops in the first round where no new offers are made.

A key difference between the M -Proposing DA and M -Proposing Priority al-
gorithms is that DA mechanisms yield matches that are stable with respect to the
reported preferences, while Priority mechanisms generally do not. Empirically,
markets using DA tend to outlast markets implementing Priority algorithms. For
example, Roth (1991) exploited regional variation in medical residency matches
in the United Kingdom to demonstrate that regions that adopted DA mecha-
nisms tended to keep using them, while regions that adopted priority mechanisms
tended to abandon them after a few years.

However, the simple fact that DA is stable relative to the reported preferences
cannot explain why it outlasts priority mechanisms. Under DA, only participants
on the proposing side have incentive to report truthfully. The receiving side of-
ten fails to reveal truthfully in Bayes-Nash equilibrium (Roth and Rothblum,
1999; Coles and Shorrer, 2014).7 Furthermore, in equilibrium, neither DA nor
priority mechanisms should yield matches that are stable relative to true prefer-
ences under incomplete information. Why then does DA persist where Priority
fails? Several contributing causes have been considered, but there are still some
markets where these explanations are not fully satisfactory.

It could be that preferences are near perfectly correlated on one or both sides of
the market. This would push the market toward a unique stable match, thereby
removing the incentive to deviate from truth-telling under DA.8 Although it is
intuitive to expect some correlation in preferences, we might also expect a lack
of correlation in preferences across matches that are commonly perceived to be
of similar quality.

Another possibility is that agents find being unmatched extremely distasteful.
Potentially profitable manipulations take a gamble at being unmatched in ex-

6The priority ordering for this mechanism ranks potential match pairs in the order of Ms’
preferences, with ties broken by W s’ preferences.

7Similar results holds for priority mechanisms (Ehlers, 2008).
8The simplest way to see this is in the one-to-one case, where it is a straightforward applica-

tion of the Blocking Lemma and the fact that no individually rational matching can make all
the members of one side of the market strictly better off than the unique stable match (Roth
and Sotomayor 1990, Lemma 3.5 and Theorem 2.27).
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change for a higher probability of matching to a more preferred partner (Roth
and Rothblum, 1999). If being unmatched is bad enough, no agent will take this
gamble. Even so, in many situations, it is unclear how bad being unmatched
is. For instance, in the NRMP match, where hospitals are on the receiving side
of the market, unmatched positions can still be filled in the centrally organized
aftermarket, known as the “Scramble”.

A third option is that the number of stable matches gets small as the market
gets large, as established theoretically in Immorlica and Mahdian (2005) and
significantly extended in Kojima and Pathak (2009). Although these papers lay
out an intuitive mechanism by which core convergence might occur, they do so in
the context of a very slowly converging asymptotic (Kadam, 2011); for example,
if agents are allowed to list five acceptable members on the other side of the
market, as is the case in our experiment, then the Kojima and Pathak (2009)
bound on the fraction of agents who could profitably deviate from a truth-telling
equilibrium does not go below 1 until the market has in excess of 1034 agents.9

Because of the extreme looseness of this upper bound at more reasonable market
sizes, we must instead rely on computational work to give us an idea of how big
a market must be for large market results to kick in.

Fortunately, Roth and Peranson (1999) provides just such a benchmark. They
show that there is little leeway for manipulation relative to submitted prefer-
ences in the NRMP match, although, as they mention, this could be because
the submitted preferences had already been manipulated to an equilibrium. To
evaluate this possibility, they then look at large simulated markets, finding that
markets the size of the NRMP have little room for manipulation, while smaller
ones do.10 Unfortunately, such computational work merely tells us that there is
likely a much better bound than the one derived in Kojima and Pathak (2009).
How much better remains an open question.

Hence, previous research leaves us reasonably confident that very large mar-
kets, such as the NRMP (around 20,000 agents), have very small cores, but
leaves us less certain about smaller markets. And there are many such markets;
in addition to the small regional matches in the UK (about 150 agents) there are
many smaller fellowship matches run by the NRMP where DA also seems to halt
unraveling, most of which have fewer than 100 fellowship programs represented,
some with multiple positions for each program (Roth, 1991; NRMP, 2009).

A new explanation for the empirical success of DA, which we pursue in this
paper, is that match participants on the receiving side of a DA mechanism might
truth-tell in an out-of-equilibrium manner, leading to truly stable matches. To

9Specifically, the asymptotic states that the upper bound equals 16·q·k
log(q·n) , where q is the

maximum capacity of any hospital, k is the number of hospitals that each doctor is allowed to
list, and n is the number of hospitals. We set q = 1 and k = 5, and solve for the n that makes
the bound equal to 1.

10See Figure 2 in Roth and Peranson (1999). Further, note that its simulations involve are
for one-to-one markets. The asymptotic mentioned in Footnote 9 implies that there is more
leeway for manipulation in many-to-one markets, as q and k must increase.
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confirm this intuition, we will look at strategies used by experimental participants
on the receiving side of DA and M -Proposing Priority both in an environment
where they should truth-tell and in an environment where they should deviate
from truth-telling. We find that truth-telling rates are similarly high in both
environments under DA, but that truth-telling rates are both economically and
statistically different under Priority. The first result supports our story of out-of-
equilibrium truth-telling, while the second demonstrates that the truth-telling is
unlikely to be a mere artifact of the lab.

To understand what drives the differences in strategic play, we estimate a struc-
tural learning model, derived from the Experience-Weighted Attraction (EWA)
model introduced by Camerer and Ho (1999). Our reparametrized EWA decom-
poses strategic play into initial cognition and learning dynamics. We find that
under DA, players fail to identify profitable deviations from truth-telling in their
initial assessment of the strategic environment. In addition, they rely more heav-
ily on their faulty assessment, and they are reluctant to explore new strategies.

We would like to emphasize that we think of the out-of-equilibrium truth-
telling explanation put forward by this paper as a complement of, rather than
a replacement for, the other explanations we have mentioned. The persistence
of DA even in small markets implies that there might be something else going
on besides the core convergence explanations which have previously been put
forward, and we primarily seek to address this gap in understanding.

Before proceeding, we briefly mention how the current paper fits into the previ-
ous experimental matching literature. The first two-sided matching experiments
date to the early 1990s (Sondak and Bazerman, 1991; Harrison and McCabe,
1996). An experiment that explicitly compares priority and DA mechanisms is
described in Kagel and Roth (2000), although their paper focuses more on unrav-
eling behavior than on strategic preference revelation. They do, however, provide
a nice demonstration of the intuitive link between stability and persistence. Ünver
(2005) runs a similar experiment that also includes linear programming mech-
anisms. Related experiments include Haruvy and Unver (2007) and Echenique
and Yariv (2010), which look at repeated decentralized markets, and Nalbantian
and Schotter (1995), which looks at several mechanisms that involve matching
with money. Our experiment is perhaps most closely related to Echenique, Wil-
son, and Yariv (2016), which also looks at strategies in a two-sided matching
market. Their design allows agents to go through the DA algorithm as an ex-
tensive form game, and their main finding is that agents on the proposing side
tend to skip over proposals sub-optimally. Our design treats the DA algorithm
as a normal form game, and we focus on the strategies of the receiving side of
the algorithm, finding some sub-optimal truth-telling. To our knowledge, we are
the first paper to focus on the strategies of the receiving side explicitly. A recent
body of literature has developed comparing predicted and actual play under dif-
ferent allocation mechanisms (e.g., Li (2017); Rees-Jones (2017); Duflo (2017);
Zhang and Levin (2017)). Finally, we mention several other experiments that
focus on strategies used by the proposing side, mainly in the context of school
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choice, such as Chen and Sönmez (2006); Pais and Pintér (2008); Calsamiglia,
Haeringer, and Klijn (2009), and Featherstone and Niederle (2016).

Our findings also contribute to large body of work on preferences for truth-
telling. In a meta-analysis of previous experiments, Abeler, Nosenzo, and Ray-
mond (2019) argue that subjects display behavior consistent with a preference
for truth-telling for being seen as honest, and suggest that mechanisms that rely
on truthful revelation may be effective even when they are not incentive compat-
ible. Our results indicate that the preference for truth-telling may be outweighed
when the mechanism is easy to game.

2. TWO MARKETS

In our experiment, we will use M -Proposing DA and M -Proposing Priority in
conjunction with two different market structures.11 Under one structure, theory
predicts that the receiving side will deviate from truth-telling in a particular
way under both mechanisms, while under the other structure, theory predicts
truth-telling. Note that our experimental design will constrain the Ms to truth-
tell, focusing on the behavior of the W s. Because of this design feature, our
equilibrium characterizations concern how the W s respond to the truth-telling
from the Ms and whether truth-telling can be sustained in equilibrium for the
Ms.

Throughout this section, we will only present theoretical results specific to
our experimental markets, but in the Appendix, we show that there is a broad
class of symmetric environments in which we expect similar results.12 Symmetric
environments can be thought of as representing realistic situations where match
participants have little information about others’ preferences. In such settings,
the kinds of manipulations that we expect to see in the lab (truncations) are, in
the sense of Roth and Rothblum (1999) and Ehlers (2008), fundamental.13

2.1. The uncorrelated market

Consider a small matching market with 5 Ms and 5 W s. The true ordinal
preferences of each participant are drawn independently from the uniform distri-
bution over rank-order lists that rank ∅ (the outcome of being unmatched) last.
Cardinal payoffs are a decreasing function of ordinal rank only. We call this the
uncorrelated market.

11See the Introduction for definitions of these mechanisms.
12See Appendix A for rigorous model definitions, and Appendix B for all proofs. The results

in the Appendix are also of some independent interest because they extend the results of Roth
and Rothblum (1999) and Ehlers (2008) to show how truncation strategies are not just best-
responses to symmetric beliefs, but are also the strategies used in equilibria in which agents
use anonymous strategies.

13Also see Day and Milgrom (2008) on how such strategies also appear in core selecting
auctions.
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Before proceeding to characterize equilibrium, we must first introduce a few
definitions. A revelation strategy is a mapping from true preferences to reported
preferences. Now, due to the symmetry of the problem, any equilibrium in which
some agent used a strategy that depended only on a match partner’s label would
seem unnatural. Therefore, think of an agent’s true preferences as a six element
vector with the outcome of being unmatched, ∅, as its last entry, and define
an anonymous strategy to be a revelation strategy that always reports the same
permutation of the true preference vector.14 Further, define a truncation strategy
to be an anonymous strategy where the permutation simply switches the sixth
element and some other element of the true preference. We will also consider
it a truncation if the permutation is the identity, that is, truth-telling is also a
truncation strategy.

Under M -Proposing DA, the characterization of equilibrium is quite simple,
extending the main result of Roth and Rothblum (1999).15

Proposition 1 In the uncorrelated market, under M -Proposing DA, any equi-
librium in anonymous, weakly undominated strategies involves truth-telling for
each m ∈M and truncation for each w ∈W .

Under M -Proposing Priority, the best-response of the W s when the Ms are
constrained to truth-tell is similar, extending the main result from Ehlers (2008).

Proposition 2 In the uncorrelated market, under M-Proposing Priority, if all
agents play anonymous, weakly undominated strategies, and all m ∈M truth-tell,
then all w ∈W best-respond to the other agents by playing truncations.

In the uncorrelated market, then, the unifying principle is that, under both
mechanisms, we expect to see the members of W playing truncation strategies.16

2.2. The correlated market

Now, instead of drawing preferences independently for the members of M ,
draw only one preference and give it to all members of M . Continue to draw
preferences independently for each member of W . We call this the correlated
market. Propositions 3 and 4 demonstrate that we expect truth-telling for the
members of W under both mechanisms.

14Note that there is some redundancy in this definition, as the ordering of agents ranked as
unacceptable does not matter in any of the mechanisms we consider.

15Roth and Rothblum (1999) concerns best response to a certain class of beliefs; our theorem
concerns strategies used in a certain class of equilibria.

16We might be worried that an experiment that constrains the Ms to truth-tell doesn’t have
much external validity if such behavior cannot be supported in equilibrium. To this critique,
we can provide two statements which are proven in the Appendix. The first is that, at any
symmetric equilibrium, the Ms must truth-tell. The second is that the strategic problem of the
W s is the same, regardless of what anonymous, weakly undominated strategies the Ms play,
since filtering a uniform distribution through a permutation yields a uniform distribution.
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Truncation Truth-telling
(uncorrelated market) (correlated market)

Priority 9 groups 8 groups
DA 9 groups 8 groups

TABLE I

Experimental treatments

Proposition 3 In the correlated market, under M -Proposing DA, the unique
equilibrium in anonymous, weakly undominated strategies entails truth-telling by
all agents.

Proposition 4 In the correlated market, under M -Proposing Priority, if all
members of M have the same anonymous, weakly undominated strategy, then all
members of W best respond by truthfully revealing.

Proposition 3 follows from realizing that if the members of M must truth-
tell, then there is a unique stable match relative to the reported preferences.
With a unique stable match, there is no reason to deviate from truth-telling.17

Proposition 4 follows from realizing that if all members of M play the same
revelation strategy, then they will all submit the same reported preferences,
which means that a member of W receives all offers in the same round of the
M -Proposing Priority algorithm.

To conclude, we might worry that it is unrealistic that all members ofM should
use the same revelation strategy. The next proposition addresses this concern.

Proposition 5 In the correlated environment, there exist cardinal payoffs that
rationalize an equilibrium where all Ms and W s truthfully reveal their prefer-
ences.

Intuitively, we know this is so by thinking of a case where the payoff for getting
a first-ranked W is more than 5 times the payment for getting a second-ranked
W , which in turn is more than 4 times the payment for getting a third-ranked
W , etc.

3. EXPERIMENTAL SETUP

Table I shows the four treatments which comprise the experiment’s 2× 2 de-
sign. We switch the profitability of truncation on and off by switching between
the correlated and uncorrelated markets. If our hypothesis holds, we would see
no significant difference across these markets under M -Proposing DA. It could
then be, however, that experimental participants always tell the truth in the lab.

17See Footnote 8 for the sketch of the proof.
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To control for this, we also observe participant behavior under M -Proposing Pri-
ority, where the rationale for deviating from truth-telling seems more straight-
forward. If we observe a difference in truth-telling across markets under Priority,
but not under DA, then we will have shown a real effect.

In the experiment, only W s will be played by human participants; the Ms will
be played by the computer and constrained to truthfully reveal their preferences.
Obviously, in real life two-sided matching markets, the proposing side’s report to
the matching mechanism is not automatic. Under Priority, proposers do not nec-
essarily have dominant strategy incentives to report their preferences truthfully
(although as discussed in Section 2, this behavior can occur in equilibrium), and
under DA, truthful reporting is a dominant strategy, but there is some experi-
mental evidence that proposing side agents may not propose to all agents in order
in an extensive form matching market without frictions (Echenique, Wilson, and
Yariv, 2016). We nevertheless use automated proposers playing fixed strategies
so that we can focus on the previously unexamined behavior of the receiving side
under DA. Using automated Ms reduces the complexity and noise in the deci-
sion the participants face. If, as we anticipate, subjects have difficulty learning
to successfully manipulate the mechanism in this simplified environment, we are
confident they will also have trouble in the more complicated real world markets
of interest.

In the lab, each participant plays the same market for 40 rounds with the
same group of five players. In every repetition, each W privately learns their
new preferences and submits a ranking of some, all or none of the Ms. The com-
puter then generates a match outcome according to the rules of the appropriate
mechanism to the treatment. W s then learn their match outcome, as well as the
outcomes of all other W s. They gain points based on where their match part-
ner appeared in their true preference list for that round, according to payoffs
given in Table II. When designing these payoffs, our goal was to find a payoff
scheme which provided behavioral incentives that were as comparable as possi-
ble between treatments. In Figure 1, we show that we succeeded, relative to the
actual behavior observed in the lab.18 Under the payoff scheme in Table II, the
pure strategy equilibria in mixed strategies differ between DA and Priority: it
is an equilibrium for all agents to truncate their final two positions (truthfully
reporting positions one, two, and three) under DA-Truncation, and for agents to
truncate three positions under Priority-Truncation.19 In Figure 2, we show aver-
age realized payoffs to different types of strategies in each setting. As expected,
truth-telling is most profitable in the truth-telling environment; non-truthful
truncation is most lucrative in the truncation environment; and non-truncation

18Note that a simple reinforcement learning model would predict that the slopes of the
curves are much more important than the levels.

19We calculate the best response functions by simulation, as in Coles and Shorrer (2014).
When all other W s report their preferences truthfully, the best response is for the final agent
to truncate the final three preferences under DA, and to truncate the final two positions under
Priority.
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Match 1stchoice 2nd 3rd 4th 5th No match
Payoff 32 points 16 8 4 2 0

TABLE II

Payoff table

permutations are least profitable in all environments.
Finally, we address the design choice to allow for repetition, even though most

individuals participate in a matching process in the field only once (or perhaps
a handful of times in some applications). In the lab, we can adequately mimic
neither the stakes faced by participants in real matching markets nor can we real-
istically allow experimental participants as much time to consider their prospects
as they would have in the field. Instead, by having them participate in repeated
trials, we allow for participants to learn about the environment and possibly alter
their strategy as they progress. One could argue that this makes it unrealistically
easy for participants to behave strategically; however, if subjects nonetheless fail
to manipulate effectively, we can be confident that manipulation is even more
difficult in the field. Moreover, repeated play allows us to model the learning
process empirically, identifying characteristics of learning that make predicted
equilibria more or less likely.

Briefly, we mention the symmetry of our experimental environments. Non-
truncation strategies are not profitable in our setup, but in the field, they might
be. Even so, such strategies require much information to implement. Also, though
preferences in real-world markets might not look much like those in our exper-
iment, preferences are often tiered. One set (tier) of match partners is clearly
preferred to another set, which is preferred to yet another set, but over each tier,
preferences are idiosyncratic. In this context, the setup of our experiment can be
interpreted as an approximation of at least a sector of the matching market.20

All treatments were run at Stanford University during the Spring of 2009.
Each session consisted of one or two groups of 5 participants. In sessions with
two groups, groups were not mixed during the session, and participants were
not informed which other participants were in their group. At the start of each
session, participants were read detailed instructions and had to successfully work
through the steps of the appropriate mechanism for an example set of reported
preferences.21 Actual play commenced only after all participants completed the
exercise and indicated they understood the mechanism rules. Nothing was done
to overtly suggest what the treatment variables were, i.e., there was no mention
of matching mechanisms or preference distributions other than the ones in use

20Additionally, since interview constraints often prevent match participants from evaluating
all potential match partners, we might think that pre-match sorting would lead to market seg-
mentation, to similar effect. For more on modeling the interview process, see Lee and Schwarz
(2007), Lee and Schwarz (2009), and Coles, Kushnir, and Niederle (2013).

21In the lab, we provide a specific context in the hopes of making understanding easier for
participants. Proposing side agents (referred to here as Ms) are referred to as “Schools” and
the agents receiving offers (here, W s) are referred to as “Students.”
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Figure 1: Expected payoff versus number of Ms truncated (empirical)

Expected empirical round payoffs to different strategies across treatments. Expected empirical
payoffs are the average what each player would have received in every round under the indicated
strategy, holding all other players’ strategies constant. Ms Truncated indicates the length of
the truncation, with 0 representing truth telling {12345}, and 4 representing the truncation
strategy {1∅∅∅∅} where only the most preferred match is listed as acceptable. Truncation
strategies do not include non-truthful inversions of true preferences.
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Figure 2: Average Payoff by Strategy Type

Average empirical round payoffs to different strategy types across treatments. Bars represent
95% confidence intervals. Color represents actual subject behavior; treatment indicates mech-
anism and expected behavior based on the correlation of preferences in the market. For strat-
egy types, Truncation indicates a non-truth truncation strategy; Truth indicates truth-telling;
Permutation indicates all other strategies. Average profit is the average of payoffs across all
rounds in the treatment environment, including all players who play the indicated strategy in
that period.



LEARNING TO MANIPULATE 13

DA Priority

Truth-Telling 66.0% ↔(0.372) 58.4%
l(0.200) l(0.002)∗∗

Truncation 56.6% ↔(0.001)∗∗ 25.3%

TABLE III

Truth-telling rates (all periods)

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level
averages as the units of observation.

DA Priority

Truth-Telling 70.2% ↔(0.340) 60.8%
l(0.046)∗∗ l(0.002)∗∗

Truncation 54.7% ↔(0.003)∗∗ 19.3%

TABLE IV

Truth-telling rates (last 10 periods)

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level
averages as the units of observation.

in that particular treatment.
During the experimental session, participants could see their preferences for

a given round on their computer screen and were reminded of payments for all
possible match outcomes. They were then directed to click on radio buttons
to rank each of the Ms.22 After all participants submitted rankings, a results
screen showing the participant’s match for that round, their point accrual for
that round and their total cumulative points would be displayed. At all times,
a participant had the ability to see, for all prior rounds, the match outcomes
for all participants, her own true preferences, and the rank list she submitted in
that round.

4. EXPERIMENTAL RESULTS

4.1. Overall Truth-telling Rates

We are most interested in the rate of truth-telling over all periods across the
four primary treatments. This value is significantly higher in the DA truncation
treatment than in the Priority truncation treatment; however, for the two truth-
telling treatments, the differences between the DA and Priority treatments are
not statistically significant. Furthermore, the rate difference between the two DA
treatments is not statistically significant, while the difference between the two
Priority treatments is highly significant.

When we restrict attention to the last ten periods, focusing on the behavior
of subjects when they are more experienced, we find qualitatively similar effects.

22We did this so that participants would have to click the same number of times regardless
of what preference they wished to report. If declaring all Ms unacceptable were too easy, some
participants might choose to do this in order to save time and effort.
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DA Priority

Truth-Telling 16.3% ↔(0.226) 11.1%
l(0.673) l(0.210)

Truncation 14.3% ↔(0.508) 17.9%

TABLE V

Non-truncation rates

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level
averages as the units of observation.

Statistically, there is a mildly significant difference between the two DA treat-
ments, as well as the high significance between the Priority treatments and the
truncation treatments seen in the data for all 40 periods.

Note that for DA, truth-telling rates are slightly lower in the last 10 peri-
ods (2% lower) in the truncation treatment, but also 4% higher in the truth-
telling treatment. Thus, the significance of the difference in truth-telling rates
between the two groups is in some sense as much due to participants in the
truth-telling treatment learning to tell the truth as it is those in the truncation
treatment learning to truncate. In sum, we only see a significant deviation from
the benchmark truth-telling rate under the Priority truncation treatment. Under
DA, participants do not respond to the truncation treatment by deviating from
truth-telling.

Of course, failure to tell the truth is not synonymous with truncation, and
although truncation weakly dominates other non-truth-telling strategies, we do
observe some portion of suspects employing “switching” or “dropping” strategies
in some rounds. Frequency of this behavior, however, is not significantly different
between any of the treatments.

4.2. Blocking Pairs and Overall Match Stability

For practical market design, we may be primarily concerned not with the
rate at which participants tell the truth, but rather with how successfully a
mechanism generates desirable (i.e., stable) match outcomes. One measure of
this is the number of blocking pairs present in any given assignment. Since the
outcome is never 100% stable in any treatment at any time, the number of
blocking pairs is one measure of the degree of stability of a match outcome: a
mechanism which generates an outcome that is stable for most participants may
still work well enough to be persistent.

Blocking pairs were found to occur significantly more often in the Priority
truncation treatment than in the DA truncation treatment or the Priority truth-
telling treatment. The two DA treatments were not significantly different in
blocking pair frequency; nor were the two truth-telling treatments.

Note that the same M or W can be involved in multiple blocking pairs if there
is more than one attainable match partner that they prefer to their actual match
partner. However, we do not observe any interesting asymmetries in terms of
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DA Priority

Truth-Telling 0.47 ↔(0.574) 0.59
l(0.809) l(0.001)∗∗

Truncation 0.49 ↔(0.000)∗∗ 1.87

TABLE VI

Number of Blocking Pairs per Period

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level
averages as the units of observation.

DA Priority

Truth-Telling 2.7% ↔(0.065)∗ 4.9%
l(0.311) l(0.030)∗∗

Truncation 3.7% ↔(0.010)∗∗ 11.1%

TABLE VII

Percentage of Ms and W s Unmatched

Numbers in parentheses are p-values from two-tailed Mann-Whitney tests with session-level
averages as the units of observation.

which unique agents are involved in multiple blocking pairs: the number of unique
Ms involved in blocking pairs is not significantly different than the number of
unique W s for any treatment, and the between-treatment differences are similar
qualitatively and in terms of statistical significance when the number of unique
Ms and W s in blocking pairs are considered separately. The total probability of
an M or W being unmatched thus follows a similar pattern across treatments.

4.3. Best Response Frequencies

Truth-telling rates establish how apt participants are to manipulate, and low
non-truth, non-truncation rates establish that these manipulations are, for the
most part, some sort of truncation.23 However, participants who truncate are
not automatically maximizing their expected payoff: they may be truncating
too much or too little. For the set of payoffs used in the experiment, we can
find an equilibrium where all agents truncate symmetrically; however, as out-of-
equilibrium strategies may be a best response to other out of equilibrium strate-
gies, we would not necessarily expect sophisticated participants to truncate as if
in equilibrium. We instead look at the ability of participants to find the strategy
which is a best response to the environment in which they find themselves. If
a significant proportion of subjects are able to achieve this in a significant por-
tion of sessions for a certain mechanism, we might reach different conclusions
as to their sophistication than we would looking strictly at truth-telling rates
(or looking at the frequency of play consistent with theoretical equilibrium, for

23The characterization of this other behavior as “non-truthful, non-truncation” is redun-
dant, as truth-telling is one extreme of the set of truncation strategies for participants. We
nevertheless use the terminology to ensure clarity.
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that matter). Also, we might wonder if there is a great deal of heterogeneity
in participant sophistication, or if all participants reported optimal truncations
about the same fraction of the time.

However, simply comparing subjects’ behavior in an individual round to the
optimal behavior possible in that period ex post fails to capture the uncertainty
which is inherent in truncation strategies—it can be optimal ex ante to truncate
in each period, even though it may be suboptimal ex post. Thus, we consider
the participant to be playing optimally in their “environment” if they play the
truncation strategy which generates the highest expected utility across some
set of rounds they played, given the actual behavior of other participants and
generated proposer preferences.

Figure 3a indicates the proportion of participants playing an overall best re-
sponse at most the indicated proportion of the time for the truncation treat-
ments. For example, approximately 36% of Priority participants never played
a best response (compared with about 52% for DA), and 50% of participants
played a best response no more than 20% of the time (compared with around
75% for DA). Note that the Priority treatment first order stochastically dom-
inates the DA treatment: for any level of frequency of best response play we
consider, more participants best respond at least that frequently in the Priority
treatment than in the DA treatment. However, this gap closes when only the
last 20 periods are considered, as seen in Figure 3b. Note that this closing of the
gap simply implies that under both mechanisms, participants have converged to
similarly bad distributions of sub-optimal play.

In the truth-telling treatments (Figures 3c and 3d), truthful reporting is always
the unique best response, and much as there was no significant difference in the
overall truth-telling rates between DA and Priority in these treatments, there
is no noticeable difference in the frequency with which individual subjects play
this best response, either in the whole sample or restricting attention to the last
20 periods.

5. LEARNING MODEL

We have shown that subjects learn to manipulate reported preferences advan-
tageously under the Priority mechanism but not under DA, despite theoretical
predictions. Understanding how actual behavior departs from theoretical predic-
tions under different allocation mechanisms has become an important area of
market design research (e.g., Li (2017); Rees-Jones (2017); Duflo (2017); Zhang
and Levin (2017)). However, the process of learning strategic play over time in
a market design setting remains poorly understood. The learning process can
inform predictions about which equilibria are likely to arise and how long agents
will take to find them. In this section, we estimate a structural model and describe
the dynamics of learning in a repeated game. We then simulate play under coun-
terfactual conditions to understand what features of the learning process drive
the gap in strategic play under different mechanisms. Finally, we incorporate
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player heterogeneity to analyze how unsophisticated players may suffer relative
to players who learn to play strategically.

5.1. Parameters and Model Dynamics

To understand how subjects determine strategies under the different mecha-
nisms and conditions, we estimate a reparametrized Experience-Weighted At-
traction (EWA) learning model introduced by Camerer and Ho (1999). EWA is
a flexible model incorporating elements of belief-based and choice reinforcement
models.24 We estimate a reparametrized EWA that separately identifies initial
cognition and interactive learning.

In the original EWA, the key objects in the model are attractions to strategies.
Each agent i begins the game with an initial attraction A to each strategy j,
denoted Aji (0), derived from pre-game analysis or prior experience. Let sji rep-
resent strategy j for agent i, and s(t) represent the set of strategies played in
period t. Additionally, define πi(s

j
i (t), s−i(t)) as the round t payoffs for player

i, which depend on player i’s strategy (sji (t)) and all other players’ strategies
(s−i(t)).

After each round of play, each agent updates the previous round’s attractions
using a weighted combination of their prior attraction and the payoff from playing
the strategy, according to the recursive formula:

(1) Aji (t) = ϕ ·Aji (t− 1) +
[
δ + (1− δ) · 1{sji}(si(t))

]
· πi(sji , s−i(t)).

The parameter ϕ represents a discount factor, and determines how quickly
previous attractions decay; the parameter δ is an introspection factor, dictating
how much the new attractions depend on realized payoffs from the previous
round relative to counterfactual payoffs from unplayed strategies. The indicator
function 1{sji}(si(t))

is equal to one if agent i played strategy j in round t, and

zero otherwise. Thus, the payoff weight associated with realized strategies is one,
while the payoff weight of counterfactual strategies is δ.

In this model, attractions map to probabilities of play in each round according
to a power form:25

(2) P ji (t+ 1) =

(
Aji (t)

)λ
∑
k=1

(
Aki (t)

)λ .
24EWA nests belief-based models, where players form expectations about other players’

strategies and choose a best response, and choice reinforcement models, in which past payoffs
reinforce successful strategies.

25In addition to the power probability form, Camerer and Ho (1999) also describe a logit
probability form, which introduces additional parameters. In the interest of parsimony, we use
the power probability form for our estimation.
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In this equation, the “exploitation factor” λ determines how often a player
chooses her more attractive strategies, relative to the probability of exploring
less attractive strategies. This dictates the amount of randomness in a player’s
sequence of strategies: when λ = 0, the player plays all strategies with equal
probability, and as λ increases, the probability of playing the most attractive
strategy increases.26

Thus, learning dynamics are determined by initial attractions, the weight of
previous attractions relative to updating from recent payoffs, and the relative
weight of actual and counterfactual payoffs. However, this parametrization fails
to distinguish fully between initial cognition and interactive learning.

We define initial cognition to be the process of thinking through a game be-
fore any opportunity to learn by actually playing it. This process may depend
on mental analyses, the description of game play, any hints and suggestions pro-
vided to the players, and beliefs about what other players may do. We distinguish
initial cognition from interactive learning, which describes the dynamics of learn-
ing over the course of the game based on feedback (in the form of payoffs and
information about allocations). The culmination of initial cognition is the set
of play probabilities for each possible action j, for each individual or type i, in
the first round of play, {P ji (1)}i,j . Although these probabilities are encoded by

the initial attractions, {Aji (0)}i,j , and the exploitation factor, λ, the mapping
from these parameters to the initial play probabilities is not one-to-one, since the
power-form probability function is invariant to multiplying all initial attractions
by a common factor.

To pin down the mapping between probabilities and attractions, we define a
new parameter that captures the additional information codified in the initial
attractions. Let ‖Ai(0)‖ denote the λ-norm of the vector of initial attractions.
That is,

‖Ai(0)‖ ≡

(
mi∑
k=1

(
Aki (0)

)λ)1/λ

.

This parameter is a measure of the size the initial attractions. In this reparametriza-
tion, the initial attractions are no longer free parameters; instead, they are de-
termined by

Aji (0) = ‖Ai(0)‖ ·
(
P ji (1)

)1/λ
.

The free parameters of this reparametrized learning model are now {P ji (1)}i,j ,
‖Ai(0)‖, λ, ϕ, and δ. This fully specifies the model, and separates the initial cog-
nition from interactive learning. For simple interpretations of these parameters,

26Camerer and Ho (1999) refer to λ as the “exploration” factor. We have changed the name
to match the intuition behind the model: it is more likely that the player “exploits” the most
attractive strategies (rather than “exploring” new strategies) as λ increases.
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we must first discuss the intuition behind the interactive learning component of
the model.

Essentially, each attraction is the net present value of the stream of payoffs
associated with a strategy. The parameter ϕ represents the discount rate, while
the parameter δ represents how much counterfactual payoffs are weighted relative
to realized payoffs. Agents choose an action randomly according to the power-
form probability function discussed above and the exploitation factor λ. All of
this is sensible, but we have yet to discuss where these discounted sums should
start in the first round of play. The initial play probabilities constrain these
initial attractions, but don’t completely pin them down.

This is the role of ‖Ai(0)‖. Intuitively, it is the natural way to sum up all of
the payoff streams that have been aggregated across the different actions.27 It
tells us how initial cognition will be weighted relative to interactive learning in
terms of payoffs from the game. In other words, if the average payoff in a game
is $1 per round, then (very roughly), ‖Ai(0)‖ tells us how initial cognition is
weighted in terms of discounted rounds of interactive play.

5.2. Estimation

In order to estimate the parameters of the model through maximum likelihood
estimation (MLE), we first need to simplify the parameter space. Many previous
papers estimating the EWA model have done so in games with a small strategy
space (see, for instance, the sample applications in Camerer and Ho (1999)). With
more available strategies, it becomes computationally challenging to estimate
the initial attraction to each strategy.28 In our setting, players select among 325
strategies in each round, creating an intractable estimation problem.29

27Mathematically, the λ-norm is the NPV required to yield the same probability weight
while concentrating the NPVs from all the actions into just one. As such, it is, in some sense,
the norm that weights entries in a way that corresponds to probability of play. For instance,
note that as the exploitation factor λ grows large, ‖Ai(0)‖ approaches max

j
Aji (0), which makes

sense as the maximum attraction is the only one that matters as λ→∞.
28In more complex strategy spaces, some papers estimating an EWA model use other ap-

proaches to reduce the number of strategies estimated. For example, in the beauty contest
game with 101 strategies, authors often lump groups of 10 strategies together such that one
initial attraction is estimated for all integers in a range, such as 1–10 (Camerer and Ho, 1999).
In our setting, the strategies do not have a clear ordering (as in a 0–100 beauty contest) that
would make strategy lumping straightforward. Another popular approach is to assign initial
attractions to all pure strategies, rather than estimating them at all (Chen and Khoroshilov,
2003; Cotla, 2015; Wu and Bayer, 2015; Ho, Camerer, and Chong, 2007). Ansari, Montoya,
and Netzer (2012) defines the vector of initial attractions as the relative frequency of play in
the first round.

29The strategy space for each player during each round of play includes any permutation of
preferences over all 5 outcomes, and permutations of any set of truncated preferences (as long as
at least one preference is listed, and the acceptable matches are listed before any unacceptable
ones). The number of possible strategies in a round is 5!+4×

(5
1

)
+3!×

(5
3

)
+2!×

(5
2

)
+1!×

(5
1

)
=

325.
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However, most (225 of 325) strategies are never played in any round of play,
and only 20 strategies are played in the first round of any session. Moreoever,
only 11 strategies are played more than once in an initial round, suggesting that
initial probabilities of play are concentrated across a small number of strategies.
Rather than estimate initial probabilities for each strategy, we estimate initial
probabilities for these 11 strategies, and a single initial probability shared uni-
formly across all other strategies. This drastically reduces the parameter space,
while maintaining flexibility to explain a wide range of observed behaviors.30

With this setup, we can now estimate 15 parameters for each treatment condi-
tion: 11 initial probabilities P ji (1) describing the initial cognition process, three
scalar parameters (ϕ, δ, and λ) to describe the learning process, and ‖Ai(0)‖
identifying the relative weight of initial cognition and learning.31

5.3. Learning Model Parameter Estimates

Differences in both initial cognition and learning dynamics help explain sub-
jects’ failure to manipulate reported preferences under DA. In Table VIII, we
present results of the structual estimation. Estimates of ϕ, λ, and δ characterize
learning during play. For ease of interpretation, we present a transformation of
λ, 2

1
λ , which we describe in detail below. Initial cognition is described in the ta-

ble with initial probabilities of play into three types of strategies: truth-telling,
non-truthful truncation, and permutation strategies.32

Initial probabilities of truth telling are similar across the DA Truth (55.4%),
DA Truncation (51.9%), and Priority Truth (50.8%) treatments, but much lower
under Priority Truncation (27.4%). This suggests that before play begins, players
in the Priority Truncation believe there are profitable deviations from truth-
telling. The estimates for initial probabilities of playing non-truthful truncation
strategies bear out this finding: subjects under Priority Truncation are much
more likely to trunctate (46.7%) than under any other treatment. Under all
treatment treatments, permutation strategy probabilities range between 21.8%
and 28.9% and do not vary enough to drive differences in the truth-telling rate.

In addition, the weight of initial cognition ‖Ai(0)‖ is higher under DA treat-
ments, indicating that subjects rely more heavily on pre-game analysis when
determining their strategies under DA. This reliance on analysis compounds the
errors that subjects make in determining their initial probabilities of play in the
DA Truncation treatment. Subjects under DA Truncation play as if they had
about 30% more pre-game experience than their counterparts under Priority
Truncation.

30The 11 estimated strategies include all truncation strategies and six permutation strategies
that are not predicted by theory. For a list of all estimated probabilities, see Appendix Table
XIII.

31Note that we only need to estimate 11 probabilities, since the sum of initial probabilities
must be one. The probability of playing one of the non-estimated strategies is pinned down by
the other estimates. For more details on model estimation, see Appendix C.

32Estimation results for individual strategies are shown in Appendix C, Table XIII.
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TABLE VIII

Parameter Estimates by Treatment

Parameter Interpretation
DA

Truth
DA

Trunc

Priority

Truth

Priority

Trunc

ϕ Discount Factor 0.921 0.881 0.850 0.891
(0.012) (0.010) (0.017) (0.009)

2
1
λ Probability Doubling Factor 1.547 1.547 1.978 1.716

(0.045) (0.050) (0.102) (0.057)

δ Introspection Factor 0.004 0.005 0.000 0.002
(0.002) (0.002) (0.000) (0.001)

‖A(0)‖ Payoff-Weight of Initial Cognition 64.880 112.319 35.123 85.887
(10.143) (17.164) (8.001) (11.660)

PTruth-telling(1) Initial Probability of Truth-Telling 0.554 0.519 0.508 0.274
(0.045) (0.036) (0.053) (0.032)

PTruncation(1) Initial Probability Truncation 0.143 0.255 0.288 0.467
(0.031) (0.031) (0.045) (0.061)

PPermutation(1) Initial Probability of Permutation 0.289 0.219 0.218 0.244
(0.034) (0.025) (0.038) (0.026)

Maximum likelihood estimates of reparametrized EWA model, estimated separately by treatment
group. Standard errors shown in parenthesis.

As described above, three parameters in our model—ϕ, λ, and δ—determine
the dynamics of the interactive learning process. We find that λ is significantly
smaller under Priority than under DA, suggesting that Priority players are more
inclined to explore new strategies, while under DA players prefer to exploit their
most preferred strategy. This difference may explain why gaps in truncation rates
persist after many rounds of play. In Table VIII, we transform λ to make its in-
terpretation more explicit. The transformation 2

1
λ describes the attraction ratio

that leads to doubling the probability ratio. Under DA, doubling the probability
of play means the attraction to one strategy is about 1.5 times the attraction
to another strategy. Under Priority, doubling the probability of play requires a
much higher attraction ratio of 1.7-2.0.33

Differences between some treatments of the parameters ϕ and δ are also sta-
tistically significant, but the differences are economically less significant and
unlikely to explain differences in truncation rates. The introspection factor δ
describes how much players are able to learn from unplayed strategies. We find
that δ is precisely estimated to be between 0.0002 and 0.005 for all treatments,
suggesting that more than 99.5% of learning from any round is from realized
payoffs rather than counterfactual learning.

Estimates for discount factor ϕ range between 0.850 for the Priority Truth
treatment and 0.921 for the DA Truth treatment. The parameter ϕ dictates how
the influence of previous attractions persist over time. To interpret these values,

33The ratio of probabilities P i

P j
of any two strategies i and j is given by

(
Ai
Aj

)λ
.
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we calculate the half-life of the attraction—the number of periods required to
halve the influence of the attraction. The half-life of attractions is about 8.4
periods under DA Truth, 5.5 periods under DA Truncation, 4.3 periods under
Priority Truth, and 6.0 under Priority Truncation.34 These figures provide some
insight into the learning process, but they do not explain the systematic differ-
ences in learning to manipulate reported preferences.

5.4. Simulation

Having estimated the structural learning model, we can simulate play under
counterfactual conditions. We take advantage of this benefit to examine long-
term dynamics of learning that are impossible to observe in the lab, and to
separately identify the effects of initial cognition and interactive learning. We
simulate play under the DA mechanism in the uncorrelated environment, where
theory predicts players will truncate their reported preferences. In this setting,
we simulate 500 rounds of repeated play, where agents learn according to one of
the following learning processes:

1. All Priority Truncation treatment estimates
2. Priority Truncation initial probabilities, DA Truncation scalars, Priority

Truncation weight
3. Priority Truncation initial probabilities, DA Truncation weight, Priority

Truncation scalars
4. DA Truncation initial probabilities, Priority Truncation weight, Priority

Truncation scalars
5. All DA Truncation treatment estimates

In Figures 18, 5, and 6, each line represents the average of 500 simulated groups
of players under each learning process. Figures 18 and 5 show simulated truth-
telling and truncation rates, respectively. Truth-telling rates start off much higher
under DA Truncation initial probabilities, and slowly decline as players engage
with the mechanism over 500 rounds. Even after 500 rounds, however, many
players fail to learn successful manipulation strategies, and truth-telling remains
higher among players with DA Truncation initial probabilities than among the
other groups. In Figure 5,

5.5. Heterogeneity in Learning

One major assumption in the structural model estimated above is that all
players learn according to the same process. In this section, we relax this as-
sumption to explore the role of heterogeneity in the learning process. Indeed,
strategyproofness is seen as desirable in part because it protects unsophisticated
agents.

34The half-life is given by t 1
2

= − log(2)
log(ϕ)

.
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Figure 4: Simulated Truth-Telling Under DA with Hypothetical Learning Pa-
rameters
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Figure 5: Simulated Truncation Under DA with Hypothetical Learning Param-
eters

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of (Non−Truthful) Truncation by Period

Round

P
ro

ba
bi

lit
y 

of
 T

ru
nc

at
io

n

Priority Parameters
DA Scalars

DA Prob
DA Weight

DA Parameters



26 FEATHERSTONE, MAYEFSKY, AND SULLIVAN

Figure 6: Simulated Blocking Pairs Under DA with Hypothetical Learning Pa-
rameters
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To address this issue, we propose a heterogeneous learning model with two
types of agents: Learners and Naifs. Learners choose a strategy in each round
according to the EWA learning process described above. They have the oppor-
tunity to explore strategies and adjust their play according to the payoffs. Naifs,
on the other hand, simply report their true preferences in every (or almost every)
round. This model is appealing in its parsimony — it adds only one parameter
to the estimation, and allows the resulting estimates to be compared directly.
The model described in 5.1 is equivalent to the heterogeneous model, but with
the share of Learners constrained to be 100%.

This model is only useful for describing behavior in the uncorrelated market. In
the correlated market environment we cannot distinguish between truth-telling
due to sophistication and that due to naivete. We estimate the learning model
separately by treatment, using the subset of players who play non-truthful strate-
gies at least twice in the forty rounds of play. Players who report truthfully 39
or 40 times are considered naive truth-tellers, and comprise 26.7% of players in
the DA Truncation treatment and 6.7% of players in the Priority Truncation
treatment.

Results are shown in Table IX. Table X compares predictions of the homoge-
neous and heterogeneous models against the data observed in our experiment.
To generate the model predictions, we simulate as described above in Section
5.4. In the heterogeneous model, simulated players are randomly assigned a type
as a Naif or as a Learner: Naifs report truthfully in every period, while Learners
update their probabilities of play according to the EWA model. We find that
introducing heterogeneity does not significantly improve model fit.

6. CONCLUSION

Participants in matching markets might not truncate under DA, even when
doing so would be significantly profitable. We show this in a simple experimen-
tal environment where participants were trained on the mechanism, given ample
opportunity to learn through feedback, and were not subject to any random-
ness that might come from non-straightforward play on the proposing side. Even
in this simple setting, players use very little counterfactual analysis, and learn-
ing dynamics vary only in players’ initial assessment of the game. In the field,
where things are more complicated and information is more sparse, we have little
reason to think that match participants would be more likely to learn to trun-
cate. These results also suggest that the persistence of DA clearinghouses may
rely on participant misoptimization, and that interventions designed to improve
understanding could lead to unravelling.

In addition to understanding the persistence of DA in the field, we also think an
experiment such as ours feeds into the broader concerns of market design. When-
ever a matching mechanism is strategy-proof, it is straightforward for designers
to predict agent behavior in the field, since both focality and optimality push
towards truth-telling. Sometimes though, strategy-proofness is either not desired
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TABLE IX

Parameter Estimates by Treatment for Learners

Parameter Interpretation
DA

Trunc

Priority

Trunc

ϕ Discount Factor 0.877 0.891
(0.010) (0.009)

2
1
λ Probability Doubling Factor 1.593 1.726

(0.054) (0.058)

δ Introspection Factor 0.004 0.001
(0.002) (0.001)

‖A(0)‖ Payoff-Weight of Initial Cognition 142.338 95.566
(22.852) (13.122)

PTruth-telling(1) Initial Probability of Truth-Telling 0.394 0.244
(0.038) (0.031)

PTruncation(1) Initial Probability Truncation 0.322 0.487
(0.036) (0.061)

PPermutation(1) Initial Probability of Permutation 0.284 0.280
(0.029) (0.026)

Maximum likelihood estimates of reparametrized EWA model for learners only,
estimated separately by treatment group. Sample includes all learners, defined
as experimental subjects who played non-truthful strategies at least twice in a
session. Learners comprised 73.3% of subjects in the DA Truncation treatment
and 93.3% of subjects in the Priority Truncation treatment. Standard errors
shown in parenthesis.
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TABLE X

Measures of Model Fit

DA Truncation Priority Truncation

Data
Hom.
Model

Het.
Model

Data
Hom.
Model

Het.
Model

P {Truth} . . .
. . . in periods 1–10 0.622 0.566 0.600 0.362 0.272 0.289
. . . in periods 11–20 0.547 0.628 0.620 0.260 0.261 0.272
. . . in periods 21–30 0.549 0.645 0.627 0.198 0.250 0.262
. . . in periods 31–40 0.547 0.650 0.631 0.193 0.243 0.253

P {Truncation} . . .
. . . in periods 1–10 0.207 0.232 0.232 0.422 0.461 0.461
. . . in periods 11–20 0.300 0.206 0.228 0.569 0.468 0.480
. . . in periods 21–30 0.318 0.203 0.227 0.624 0.477 0.491
. . . in periods 31–40 0.340 0.204 0.230 0.656 0.478 0.499

Share best responding . . .
. . . in periods 1–10 0.711 0.737 0.732 0.709 0.660 0.669
. . . in periods 11–20 0.762 0.740 0.740 0.687 0.671 0.663
. . . in periods 21–30 0.760 0.741 0.736 0.729 0.667 0.668
. . . in periods 31–40 0.762 0.745 0.748 0.676 0.669 0.671

Number of blocking pairs . . .
. . . in periods 1–10 0.071 0.538 0.529 0.349 2.074 2.058
. . . in periods 11–20 0.104 0.443 0.471 0.382 2.046 2.076
. . . in periods 21–30 0.118 0.404 0.440 0.360 2.059 2.082
. . . in periods 31–40 0.100 0.395 0.439 0.404 2.041 2.055

Comparison of statistics in experimental data, simulations from a homogeneous model of
learning, and simulations from a heterogeneous model of learning. In the heterogeneous
model, a fraction of players play truthfully in all periods; the remaining players learn ac-
cording to the reparametrized EWA model described in Section 5.1, with learning parame-
ters estimated from experimental data and shown in Table IX. Learners comprised 73.3% of
subjects in the DA Truncation treatment and 93.3% of subjects in the Priority Truncation
treatment.
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or cannot be achieved due to other design goals. Consider the job of a market de-
signer who has been tasked with creating a two-sided matching mechanism that
persists. We can view the current paper as an experiment that would help inform
our theoretical designer. Persistence can be intuitively linked to ex post stability,
so DA is a natural candidate. Unfortunately, under DA, truth-telling is generally
not an equilibrium. Theory provides a set of strategies which could outperform
truthful preference revelation: the question is then whether our designer should
expect market participants to use these deviations from truth-telling, which is
a clear candidate for a focal strategy. If agents use these profitable deviations
from truth-telling, then DA will not yield an ex post stable outcome, but if they
don’t, then it will. To determine which is the more likely outcome, the present
lab experiment becomes very informative.

In demonstrating that agents learn to play some deviations from truth-telling,
but not others, we bring up the idea that not all equilibria are equal in their pre-
dictive power. Depending on the mechanism and environment, agents are some-
times very close to equilibrium play and sometimes not. Some intuitive factors
that seem like they should be important for whether a theoretical equilibrium
will be realized in the field are focality of truth-telling, obviousness that some
deviation from truth-telling will be profitable, difficulty of finding the optimal
such deviation, and the profitability of that deviation. Unfortunately, although
these factors may guide us intuitively, there is no formal theory for how they
might trade off in determining the accuracy of an equilibrium prediction; in fact,
most of them are difficult even to define. This is where lab experiments can prove
most useful for design. The current paper, for instance, implies that truth-telling
is more strongly focal for the receiving side under DA than under Priority. It
also shows that under both mechanisms, equilibrium predictions might not hold:
under DA, participants truth-tell when they shouldn’t, while under Priority, they
deviate from truth-telling, but in a sub-optimal way. In short, although the main
contribution of this experiment is to show how out-of-equilibrium truth-telling
could lead to ex post stability of DA in the field, we also feel that the experiment
is the sort of inquiry that should be used in practical market design.
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APPENDIX A: MODEL AND DEFINITIONS

A marriage market under incomplete information is a quadruple (M,W,P, λ), where M
and W are sets of agents on the two sides of the market, P is the set of all possible preference
profiles for the agents, and λ is a measure over P. We require that all agents in the market find
at least one match partner acceptable. An element of P is a vector (Pi)i∈M∪W of individual
preference profiles. Pm for some m ∈M is an ordering over W ∪ {∅}, where ∅ represents the
outcome of being unmatched; Pw for some w ∈W is defined similarly. Hence, we can think of
some W ’s preference ordering as an (|M | + 1)-vector whose elements are ∅ and the members
of M .35 A matching is a function µ : M ∪W 7→ M ∪W ∪ {∅} such that for any m ∈ M and
w ∈ W , we have µ(m) ∈ W ∪ {∅}, µ(w) ∈ M ∪ {∅}, and µ(m) = w ⇔ µ(w) = m. A strategy
for an agent i is a function σi : Pi 7→ Pi where Pi denotes the projection of P onto only agent
i’s preference profile.

Next, we define an important concept, introduced in Roth and Rothblum (1999), which we
use to analyze the information structure of the matching markets used in our experiment. Let
the m↔ m′ operation switch the places of m and m′ in the preference of each W and assigns
the preferences of m to m′ (and vice versa). Let w ↔ w′ be defined analogously. The following
definition codifies the idea of a low information environment.

Definition 1 For some w ∈ W , a marriage market (or a distribution over M and W
preferences) is M-symmetric with respect to w if and only if, for any two m,m′ ∈ M ,

λ(P−w|Pw) = λ(Pm↔m
′

−w |Pw). If this holds for all w ∈ W , we simply call the market M-
symmetric. W -symmetry is analogously defined. If a marriage market is both W -symmetric
and M -symmetric, then we call it MW -symmetric.

In such symmetric environments, we want to be able to rule out equilibria where strategies
depend on label, as these seem artificial. Formally,

Definition 2 A strategy σi is anonymous if and only if, for any two preferences, Pi and P ′i ,
that list the same number of acceptable match partners, there exists some permutation π such
that σi(Pi) = π(Pi) and σi(P

′
i ) = π(P ′i ).

Note that this definition allows for different permutations to be used when a different number
of match partners are acceptable. Of the set of anonymous strategies, in the low information
environments we look at in the lab, we will find that we expect a certain type of strategy in
equilibrium.

Definition 3 A truncation is an anonymous strategy where the permutation for a given
number of acceptable match partners, k − 1, is a composition of permutations that first ex-
changes the kth position (i.e. ∅) with the jth position, where j ≤ k, and then permutes all
positions besides k and j in a way that if a position started ranked (above j/between j and
k/below k), its permuted position is ranked (above j/between j and k/below k).36

Finally, we introduce a technical condition needed for uniqueness (but not existence) of the
types of equilibria we will be looking for.

Definition 4 A distribution over preferences is called W-thick if, for any w ∈W , m,m′ ∈M ,
and m′′ ∈ M \ {m,m′} there is a positive probability that m and m′ rank w first, while m′′

ranks w′′ 6= w first and w′′ ranks m′′ first. M-thick is defined analogously. A distribution over
preferences is called MW-thick if it is both M and W thick.

35In our context, thinking of preferences as vectors introduces a bit of redundancy since the
mechanisms we consider are all individually rational; for example, (m1,m2,m3, ∅,m4,m5) and
(m1,m2,m3, ∅,m5,m4) are functionally equivalent.

36Note that under this definition, a truthful strategy is a truncations.
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Thickness is a sufficient condition that prevents an agent from ruling out the possibility that
any two potential match partners are her only two stable match partners. Weaker conditions
are possible, but thickness itself is quite weak: for instance, it is met when all possible profiles
of first choices are drawn with positive probability.
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APPENDIX B: PROOFS

Lemma 1 Under M-Proposing DA, truth-telling is the only weakly undominated strategy for
all m ∈M .

Proof: Assume than the strategy of some m ∈ M submits a preference P̃m that is not the
true preference, Pm. Dubins and Freedman (1981) show that truth-telling cannot yield a worse

outcome than a lie. Let k be the first position in the submitted rank-order list that P̃m differs

from the true preference, Pm. Let w = Pm(k) and w′ = P̃m(k). If all W s except for w and w′

rank m as uncceptable, and w and w′ only rank m as acceptable, then m gets w if he submits

Pm and w′ (which he likes less) if he submits P̃m. Hence, we have shown that truth-telling is
never worse than a lie and is strictly better given some profile of strategies for the other agents.
Q.E.D.

Lemma 2 (Roth, 1989) Under M-Proposing DA, it is weakly dominated for any w ∈ W to
not list her true first choice first.

Lemma 3 In a marriage market that is M-symmetric with respect to w, if all agents besides
w play anonymous strategies, and all m ∈ M play the same strategy, then the distribution
over submitted preferences, λ̃(·), is also M-symmetric with respect to w.

Proof: To prove this, we show why the following equation must hold:

λ̃(σ−w(P−w)|Pw) = λ(P−w|Pw) = λ(Pm↔m
′

−w |Pw)

= λ̃(σ−w(Pm↔m
′

−w )|Pw) = λ̃((σ−w(P−w))m↔m
′
|Pw)

The first equality comes from the definition of λ̃, the second from the fact that the true
preferences are M -symmetric with respect to w, and the third, again from the definition of
λ̃. For the last equality, we must note two things. First, since the m ↔ m′ does not change

the rank of ∅ for the W ’s, the σ−w operator applies the same permutation to Pm↔m
′

w′ as it
does to Pw′ . Second, since the M ’s are all playing the same anonymous strategy, it makes no
difference whether we switch the preferences of m and m′ before we apply the σ−w operator
or after. Hence, σ−w commutes with m↔ m′.37 Q.E.D.

Proposition 6 In an M-symmetric marriage market, under M-Proposing DA, there exists
an equilibrium in anonymous, weakly undominated strategies that involves truth-telling for
each m ∈M and truncation for each w ∈W . Furthermore, if the market is also W -thick, all
equilibria in anonymous, weakly undominated strategies are like this.

Proof: By Lemma 1, any equilibrium in weakly undominated strategies involves truth-telling
by all M ’s. By Lemma 3, we then know that, at an equilibrium in weakly undominated,
anonymous strategies, the distribution of reported preferences, λ̃, is M -symmetric. Then, by the
main proposition of Roth and Rothblum (1999), we know that truncation is a best response for
all w ∈W . Furthermore, by Lemma 2, every W must be truthfully ranking her first choice M .
Then, by the W -thickness assumption, it is with positive probability that for any m,m′ ∈M ,
w can only potentially match to m or m′. In these states of the world, we are in Case D of
the proof from Roth and Rothblum (1999), which means that truncation strictly dominates
non-truncation. Q.E.D.

37Note that we are not claiming that permutations commute: our interchange operator
references school names and not positions in a rank-order list.



LEARNING TO MANIPULATE 37

Since the uncorrelated market is M -symmetric and W -thick, Proposition 1 in the main
text is an immediate corollary.

Lemma 4 Under M-Proposing Priority, it is weakly dominated for any w ∈W to not truth-
fully rank her first choice M .

Proof: In the first round w gets proposals, she will be permanently matched. Ranking her
first choice, m ∈M first can not hurt her, but failing to do so can hurt her if she also receives
a proposal in that round from an m′ ∈ M that she ranked higher than m, but actually likes

less. Let m and her declared first choice, P̃w(1), both rank w first, and let all other m′′ ∈ M
declare w unacceptable. Ranking m first instead of P̃w(1) is an improvement. Q.E.D.

Proposition 7 In an M-symmetric marriage market, under M-Proposing Priority, if all
agents play anonymous, weakly undominated strategies, and in addition, all m ∈ M truth-
tell, then all w ∈ W can best-respond to the other agents by truncating. If the market is also
W -thick, then all of their best responses are truncations.

Proof: By Lemma 3, we know that the distribution of reported preferences, λ̃, isM -symmetric
with respect to w. Then, by Proposition 3.2 and Remark 3.2 of Ehlers (2008), we know that
truncation is a best response for all w. Furthermore, by Lemma 4, every W must be truth-
fully ranking her first choice M . Then, by the W -thickness assumption, it is true with positive
probability that for any m,m′ ∈ M , w can only potentially match to m or m′; hence, Equa-
tion A2 from Ehlers (2008) must hold strictly, which means that truncation strictly dominates
non-truncation. Q.E.D.

Since the uncorrelated market is M -symmetric and W -thick, Proposition 2 in the main
text is an immediate corollary.

Lemma 5 Under M-Proposing Priority, any report for any m ∈M that does not list all and
only all truly acceptable w ∈W as acceptable is weakly dominated by one that does.

Proof: Consider an arbitrary m ∈M submitting a list L with n acceptable match partners
which excludes at least one acceptable w′ ∈ W . Now consider L′, a list identical to L for the
first n entries with w′ listed in the (n+1)st position and no acceptable entries thereafter. Under
M -Proposing Priority, any set of submissions for other agents resulting in m being matched
to a given W when m submits L will also result in M being matched to that W when m
submits L′. So L′ never generates a worse outcome for m than L. However, consider a set of
submissions such that no member of W listed in L ranks m as acceptable, and the submitted
preference list of w′ lists only m as acceptable. In this case, M -Proposing Priority will match
m and w′ when L′ is submitted and will match m to no one when L is submitted. Since w′ is
acceptable to m by construction, m achieves a better result in this case by submitting L′.

Now consider some m ∈M who lists a truly unacceptable w ∈W as acceptable. Removing
this w from his list cannot hurt m, since M -Proposing Priority makes permanent matches after
each round. Now, let all w′ ∈ W \ w declare m unacceptable, let all m′ ∈ M \m declare w
unacceptable and let w declare m acceptable. With this strategy profile, m will match to w
which he could have avoided by declaring her unacceptable. Q.E.D.

Lemma 6 Under M-Proposing Priority, if the distribution of reported preferences for all
agents besides m ∈M are W -symmetric with respect to m, then truth-telling is a best-response
for m.

Proof: This proof borrows heavily from Roth and Rothblum (1999). First, we lay out a
few of the properties of M -Proposing Priority. Consider, P , w′, w ∈ W , m ∈ M , and let
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Lie: MPP[Pw↔w
′

m , P−m](m)
= v /∈ {w,w′} = w = w′

Truth: MPP[Pm, P−m](m)
= v /∈ {w,w′} Case A Case B Impossible

= w Impossible Case C Impossible
= w′ Case D Case E Case F

TABLE XI

Table of cases

v ∈ (W \ {w,w′}) ∪ {∅}. Denote the match of m when the submitted preferences are P under
M -Proposing Priority as MPP [P ] (m). Then,

MPP[P ](m) = v ⇔ MPP[Pw↔w
′
](m) = v

MPP[P ](m) = w ⇔ MPP[Pw↔w
′
](m) = w′

Moreover,

MPP[Pw↔w
′

m , P−m](m) = v ⇔MPP [Pm, Pw↔w
′

−m ](m) = v

MPP[Pw↔w
′

m , P−m](m) = w ⇔MPP [Pm, Pw↔w
′

−m ](m) = w′

The first set of logical statements follows immediately from the fact that MPP does not give
special treatment to any given label. The fact that applying the w ↔ w′ interchange operator

to (Pw↔w
′

m , P−m) yields (Pm, Pw↔w
′

−m ), implies the second set.
Now, let w ≺m w′. Then,

(MPP[P ](m) = w)⇒ (MPP[Pw↔w
′

m , P−m](m) = w)

Moreover, (
MPP[Pw↔w

′
m , P−m](m) = w′

)
⇒
(
MPP[P ](m) = w′

)
Switching w′ and w in a submitted ordering means that w is proposed to in an earlier round.
If it was available in the later round, it will still be available in the earlier round, and no one
else will be proposing to it in that round. This yields the first logical statement. The second
follows from a similar line of reasoning.

Now, consider the outcome for some m ∈ M for whom w ≺m w′ when he submits a
preference that truthfully ranks w and w′, MPP[P ](m), and when he submits a preference that

switches w and w′, MPP[Pw↔w
′

m , P−m](m). Using the formulas we just derived, we summarize
what can potentially happen in Table XI, while Table XII tells us what lottery over outcomes
m can expect when he truthfully orders w and w′ and when he switches their ordering, given

that everyone else’s preferences are either P−m or Pw↔w
′

−m with equal probability.
Clearly, under every case, if we take symmetry into account, truthfully ordering w and w′

either yields an outcome that is equivalent to the outcome achieved with the lie, or weakly
stochastically dominates the outcome from the lie. Now, Lemma 5 shows us that an M cannot
be hurt by listing all acceptable Ws, so we know that truth-telling is a best response for Ms
to W -symmetry.

Note that if we can show that the probability of being in Cases B, D, or E is strictly
positive, then we also show that truthfully ordering the W s strictly stochastically dominates
any lie, although we would need a further restriction to weakly undominated strategies to get
truth-telling as a unique best response. Q.E.D.

Lemma 7 In an M-thick, W -symmetric marriage market, under M-Proposing Priority, if all
w ∈W are playing the same weakly undominated, anonymous strategy, and all m′ ∈M \ {m}
are playing anonymous strategies, then all best responses for m ∈M must truthfully rank his
true first choice partner.
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Truth Lie

MPP[Pm, P−m] MPP[Pm, Pw↔w
′

−m ] MPP[Pw↔w
′

m , P−m]MPP[Pw↔w
′

m , Pw↔w
′

−m ]

Case A v v v v
Case B v w′ w v
Case C w w′ w w′

Case D w′ v v w
Case E w′ w′ w w
Case F w′ w w′ w

TABLE XII

Payoffs for the cases

Proof: By similar logic to Lemma 3, the submitted preferences areW -symmetric with respect
to m. Consider the argument of Lemma 6 with regard to the true first choice and some other
reported first choice. By the M -thickness assumption and Lemma 4, there is some probability
that those two W s rank m first, meaning that we are in Case E of Lemma 6, meaning that m
does strictly better to truthfully rank his first choice. Q.E.D.

Lemma 8 In an M-thick, W -symmetric marriage market, if each w ∈ W plays the same
anonymous, weakly undominated strategy, and each m′ ∈ M \ {m} truthfully reveals his first
choice partner, then under M-Proposing Priority, the only best-response for m′ is to truth-tell.

Proof: By Lemma 2, weakly undominated means that all W s must truthfully rank their first
choice partner. Since, by an argument analogous to Lemma 3, reported preferences must be
W -symmetric with respect to m, we conclude through Lemma 6 that m cannot do worse than
to truthfully reveal. Further, by Lemma 7, m must also best respond by truthfully ranking
his first choice partner at equilibrium. From here, the M -thickness assumption allows us to
go the rest of the way in showing that, for any two W ’s, the probability of being in Case E
of Lemma 6 is strictly positive, and that the only best response for m is to truthfully reveal.
Q.E.D.

Formally, a symmetric equilibium is one in which any twoMs are playing the same strategy,
and any two W s are playing the same strategy.

Proposition 8 In an MW -symmetric marriage market, under M-Proposing Priority, there
exists a symmetric equilibrium in anonymous strategies that involves truth-telling by the Ms
and truncation by the W s. Furthermore, if the market is MW -thick, then all symmetric equi-
libria in anonymous, weakly undominated strategies are of this form.

Proof: If every M is playing the same anonymous strategy, and every W is playing an
anonymous strategy, then by Lemma 3,the reported preferences are M -symmetric, and by
Ehlers (2008), all W s can best-respond with a truncation.

Now, consider the problem of finding the best-response of some w ∈ W to the symmetric
M strategies, σM , and a profile σ−w in which all members of W \ {w} are playing the same
mixed strategy over truncations. Call this best response σ∗w (σ−w|σM ). Solving for the best
response is an optimization problem in which w must choose her mix over truncation levels
for each possible number of acceptable Ms her preference could hold. The objective is linear
in the mixing probabilities,38 and the set of possible mixing probabilities is closed and convex.
Hence, we know that the solution exists, it is convex, and by the Theorem of the Maximum
(Mas-Colell, Whinston, and Green 1991, Theorem M.K.6), it is upper hemicontinuous. Hence,

38For a given pure strategy profile, w gets an expected payoff. Her expected payoff from a
mixed strategy is just a probability-weighted sum of these expected payoffs from pure strategies.
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by Kakutani’s Fixed Point Theorem (Mas-Colell, Whinston, and Green 1991, Theorem M.I.2),
σ∗w (σ−w|σM ) has a fixed point. Hence, for any symmetric σM , there is a symmetric σW where
each W is best responding to the other players.

Now, in any such setup, the Ms will not necessarily be best-responding. Since the market
is W -symmetric, we know that the reported preferences are W -symmetric, which means that,
by Lemma 6, the Ms can best-respond by truth-telling. Hence, we have found a symmetric
equilibrium of the sort we were looking for.

Now, if strategies are anonymous and weakly undominated, then M -thickness coupled with
Lemmas 7 and 8 requires that all such symmetric equilibria involve Ms truth-telling. Similarly,
W -thickness couples with Lemma 2 requires that all such symmetric equilibria involve W s
truncating. Q.E.D.

This proposition has an immediate corollary, which is referenced in Footnote 17 of the
main text.

Corollary (to Proposition 8) In the uncorrelated market, under M-Proposing Priority, there
exists a symmetric equilibrium that involves all Ws playing the same truncation strategy and
all Ms truth-telling. Furthermore, all symmetric equilibria in anonymous, weakly undominated
strategies are of this form.Also, we can note that so long as the Ms use anonymous, weakly
undominated strategies, the W s still best-respond with truncation. So long as the M strategies
don’t key in on a label, the W s view them strategically in the same way as they view truth-
telling Ms.

The big implication here is that if an M believes that the equilibrium played will be a
symmetric truncation equilibrium, then truth-telling is the best response. This proposition
extends work done in Roth and Rothblum (1999) and Ehlers (2008) to conditions that lead to
truth-telling for the proposing side under a priority mechanism.39 In a broader sense, though,
it turns out not to matter whether the Ms truthfully reveal.

Proposition 9 In a M-symmetric market, under M-Proposing Priority, for any w ∈ W , if
for any distinct m,m′ ∈M , Pm and Pm′ are conditionally independent given Pw and for any
m′ ∈ M and w′ ∈ W , Pm′ and Pw′ are conditionally independent given Pw, and all agents
play anonymous, weakly undominated strategies, then w can best-respond with a truncation.
Furthermore, if the market is also W -thick, then any best response must be a truncation.

Proof: Since the preferences of the Ms are all conditionally independent, it must be that for
any given number of truly acceptable match partners, all lists with that number of acceptable
partners are equally likely. By Lemma 5, the weakly undominated requirement means that the
Ms must list all acceptable W s. The anonymous requirement then means that these lists must
be permutations. Running a uniform distribution through a permutation yields a uniform
distribution. Hence, the reported preferences of the Ms must be uniformly distributed for
each number of acceptable partners, meaning that the reported preferences of the Ms are
independent of the strategies they use. Looking back to the proof of Lemma 3, the fact that
the Ms’ reported preferences are conditionally independent and uniform for each list length,
and that M preferences are conditionally independent of W preferences means that we no
longer need that all Ms play the same strategy to get the same result. This means, that
through a proof very similar to that of Proposition 7, w must best-respond with a truncation.
Q.E.D.

39Roth and Rothblum (1999) and Ehlers (2008) focus on incentives for the receiving side.
These papers also assume that reported preferences are M -symmetric instead of assuming that
the true preferences are M -symmetric and backing out sufficient conditions to ensure that the
reported preferences inherit M -symmetry as well.
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This proposition has an immediate corollary, which is references in Footnote 17 of the
main text.

Corollary (to Proposition 9) In the uncorrelated market, under M-Proposing Priority, if
all agents play anonymous, weakly undominated strategies, then all W s must best-respond with
a truncation.

Proposition (Proposition 3 in the main text) In the correlated market, under M-
Proposing DA, the unique equilibrium in anonymous, weakly undominated strategies entails
truth-telling by all agents.

Proof: Under M -Proposing DA, weakly undominated strategies require that the Ms truth-
fully reveal (Lemma 1). Hence, under the assumptions, a given W will receive all offers she is
going to receive in one round of the algorithm. To see this, first note that the top-ranked W ,
w1, will receive all offers in the first round of the algorithm. She will be matched to her declared
favorite M , and since this is a declared top-top match, the algorithm will never break it up. In
the next round, the second ranked W , w2, will receive offers from all other Ms. She will accept
her declared favorite M who proposes, and the algorithm will never break this match (since
the only potential M that w2 might defect to is matched to w1, who he prefers, and w1 was
given her declared top M). And so on. So at some point in the algorithm, a W ’s preference is
used to choose a favorite M from a set of Ms that higher ranked W s have not yet taken. There
is no gain to not truthfully revealing, as our member of W is facing a static decision problem.
Since every W has a one-in-five chance of being the last ranked W by all Ms, there is always
a positive loss to dropping. Q.E.D.

Proposition (Proposition 4 in the main text) In the correlated market, under M-
Proposing Priority, if all members of M have the same anonymous, weakly undominated
strategy, then all members of W best respond by truthfully revealing.

Proof: Under M -Proposing Priority, weakly undominated for the Ms means that all women
are listed as acceptable (Lemma 5). Under the assumptions, a member of W will receive all
offers in one round of the algorithm. There is no gain to not truthfully revealing then, as our
member of W is facing a static decision problem. Since every W has a positive probability of
being the last ranked W by all Ms, there is always a positive loss to dropping any M. Q.E.D.

Proposition (Proposition 5 in the main text) In the correlated environment, there exist
cardinal payoffs that rationalize an equilibrium where all Ms and W s truthfully reveal their
preferences.

Proof: For each M , consider a payoff vector π = (p1, p2, p3, p4, p5) which is constructed as
p5 = 1, p4 = p5 · |M | + 1, p3 = p4 · |M | + 1, etc. In the correlated M -Proposing Priority
environment, each M has a 1/|M | chance of being the first choice of any W. Thus, from the
perspective of an M with payoffs described by π, even in the worst case when all other Ms
also rank M ’s first choice as first, the M would still prefer the 1/|M | chance of getting its
first choice than a certainty of getting its second choice. Similarly, an M failing to get its first
choice would prefer the 1/|M— chance of getting its second choice to a certainty of getting its
third choice, and so on. Hence all Ms truthfully reveal, and by the previous Proposition, the
W s must as well. Q.E.D.
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APPENDIX C: MODEL ESTIMATION

The reparameterized EWA model suggests the need to estimate parameters for the learning
process δ, φ, and λ; an initial probability of play for each strategy (with initial probabilities
either shared across individuals or estimated separately for each subject); and ‖A0‖ (again,
either shared across individuals or estimated separately by subject or group), representing the
weight of initial cognition in units of payoff amounts. In a Bayesian model, this initial cognition
would be akin to pseudo-observations of play from previous rounds.

This suggests a parameter space of at least 329 dimensions, with still higher dimensionality
if we allow probabilities of play and the weight of initial cognition to vary across individuals.40

This is computationally intractable due to the large number of initial probabilities, even when
we assume assume all initial probabilities are shared by all players in a treatment.

However, most (225 of 325) strategies are never played in any round of any treatment.
Moreover, only 20 strategies are ever played in the first round of any session, and only 11
strategies are played more than once in any first round. This suggests that estimating initial
probabilities for all 325 strategies is not only computationally infeasible, but also not necessary
for us to understand the dynamics of play. Instead, for each of the four treatment groups, we
estimate the initial probabilities of play for all strategies played more than once in any initial
round, and a single joint attraction toward playing all other strategies. This reduces the search
space to 15 dimensions (three learning parameters, 11 probabilities, and the initial cognition
weight).41

Let us denote strategies by five digits, denoting the true preference ranks of the player’s sub-
mitted preferences by the digits themselves, and the submitted preferences by the order the dig-
its. Let the symbol ∅ represent a match listed as unacceptable in the submitted preference list.
For instance, the strategy {12345} represents complete truth-telling, while {12354} represents
a permutation strategy with the least preferred options listed in reverse order. A truncation
strategy such as {123∅∅} consists of listing only the most preferred three preferences. These
11 strategies played more than once in an initial round include both complete truth-telling
{12345} and the four possible truncation strategies: {123∅∅}, {12∅∅∅}, {1234∅}, {1∅∅∅∅}.
The six remaining strategies are permutations, or combinations of permutation and trunca-
tion: {21345}, {213∅∅}, {13245}, {21435}, {12354}, {23145}. Thus, this estimation strategy
allows us to measure differences in initial probability to truth telling and various truncation
strategies, and to use these parameters to follow the trajectory of attractions over the course
of the game. For the remaining strategies—those played either once or not at all in an initial
round—we estimate a single initial attraction in each treatment. While limiting our estimation
of individual attractions to repeated initial strategies requires a post hoc justification, we be-
lieve this is necessary to make the model tractable, and allows the use of this model in a much
more complex space than usual. This approach allows us to capture the differences between
truth-telling and truncation that we care about, while significantly simplifying the strategy
space. Estimating a joint attraction for all unplayed strategies, also allows the model to scale
with payoff values. Thus, this approach is flexible to applications with different payoffs.

C.1. Technical Details

To maximize over the rugged likelihood terrain, we implement the stochastic, derivative-
free Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) optimizer. CMA-ES is
designed to be robust to local optima, ridges, and discontinuities in ill-conditioned and non-
separable problems (Hansen, 2016). We estimate standard errors using a numerical approxi-
mation of the Hessian, and transform to our reparametrized EWA via the delta method. We
executed all maximum likelihood estimation in Java.

40The number of possible strategies in a round is 5!+4×
(5
1

)
+3!×

(5
3

)
+2!×

(5
2

)
+1!×

(5
1

)
= 325

41Note that we actually want to estimate 12 probabilities that are mutually exclusive and
comprehensively exhaustive, and therefore must sum to 1. By estimating 11 of the probabilities
directly, we get the 12th for free).
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For the treatment-level estimation, we directly estimate initial probabilities of 10 of the
11 strategies played initially more than once, and an additional probability shared among all
other strategies. We estimate one strategy (truth-telling, {12345}) indirectly, by taking one
minus the sum of the other probabilities. This decision was merely practical: our optimizer
accepts simple boundaries (a minimum and a maximum) for each of the estimated parameters,
so we run the risk at each iteration of the optimizer to have the sum of the directly-estimated
probabilities sum to more than one. By leaving out the most commonly played strategy, we
reduce the frequency of this event. When the sum of the randomly-drawn probability proposal
points is greater than one, we instruct the log likelihood function to return an arbitrarily large
negative value, encouraging the optimizer to seek elsewhere.
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